skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jiang, Zhigang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Optically active spin defects in wide bandgap semiconductors serve as a local sensor of multiple degrees of freedom in a variety of “hard” and “soft” condensed matter systems. Taking advantage of the recent progress on quantum sensing using van der Waals (vdW) quantum materials, here we report direct measurements of spin waves excited in magnetic insulator Y3Fe5O12(YIG) by boron vacancy V B spin defects contained in few-layer-thick hexagonal boron nitride nanoflakes. We show that the ferromagnetic resonance and parametric spin excitations can be effectively detected by V B spin defects under various experimental conditions through optically detected magnetic resonance measurements. The off-resonant dipole interaction between YIG magnons and V B spin defects is mediated by multi-magnon scattering processes, which may find relevant applications in a range of emerging quantum sensing, computing, and metrology technologies. Our results also highlight the opportunities offered by quantum spin defects in layered two-dimensional vdW materials for investigating local spin dynamic behaviors in magnetic solid-state matters. 
    more » « less
  2. Abstract Lanthanides in the trivalent oxidation state are typically described using an ionic picture that leads to localized magnetic moments. The hierarchical energy scales associated with trivalent lanthanides produce desirable properties for e.g., molecular magnetism, quantum materials, and quantum transduction. Here, we show that this traditional ionic paradigm breaks down for praseodymium in the tetravalent oxidation state. Synthetic, spectroscopic, and theoretical tools deployed on several solid-state Pr 4+ -oxides uncover the unusual participation of 4 f orbitals in bonding and the anomalous hybridization of the 4 f 1 configuration with ligand valence electrons, analogous to transition metals. The competition between crystal-field and spin-orbit-coupling interactions fundamentally transforms the spin-orbital magnetism of Pr 4+ , which departs from the J eff  = 1/2 limit and resembles that of high-valent actinides. Our results show that Pr 4+ ions are in a class on their own, where the hierarchy of single-ion energy scales can be tailored to explore new correlated phenomena in quantum materials. 
    more » « less
  3. Abstract Realizing a large Landég-factor of electrons in solid-state materials has long been thought of as a rewarding task as it can trigger abundant immediate applications in spintronics and quantum computing. Here, by using metamorphic InAsSb/InSb superlattices (SLs), we demonstrate an unprecedented high value ofg≈ 104, twice larger than that in bulk InSb, and fully spin-polarized states at low magnetic fields. In addition, we show that theg-factor can be tuned on demand from 20 to 110 via varying the SL period. The key ingredients of such a wide tunability are the wavefunction mixing and overlap between the electron and hole states, which have drawn little attention in prior studies. Our work not only establishes metamorphic InAsSb/InSb as a promising and competitive material platform for future quantum devices but also provides a new route towardg-factor engineering in semiconductor structures. 
    more » « less